Linking Data Management to Operational Management

Network Rail Lessons Learnt and Current Update

Providing technical leadership

NetworkRail

Contents

- Background
- Current Situation
- Lessons learnt
- On-going development
- > Springboard for discussion about Systems used nationally

Network Rail Asset Stock

Asset Type	Number
Footbridges	1405
Overline Bridges	8693
Underline Bridges	18660
Major Structures	34
Total Bridges	28792
Bridge Spans	56319
Culverts	21401
Tunnels	624
Retaining Walls	19573
CERDS	490
Ancillaries	>200,000

2010 Tripartite Review

- Diversity -- Judgement 20 systems
- Trend of later than ideal interventions
- Low probability, high impact environment
- Inability to enable strong risk based decisions
- No single point of Evaluation

Current Situation

structural assessment

bridge strike assessment

managing risk of adverse / extreme weather

scour assessment

manage interfaces with works carried out by other disciplines

maintain asset register

examination

manage abnormal load requests

> Renewals / deferrals

manage ad hoc reports (control, community relations, close call)

The Challenge

70,000

assets

We've been here before

Headline lessons learnt from CSAMS:

- 1. Data requirements driven by the system capability.
- 2. Too many requirements and local variants on requirements, made a solution undeliverable;
- 3. Data migration was too onerous, with expectation of a 1:1 match;
- 4. 'Big Bang' approach is too challenging to cater for in 1 increment;
- 5. IT is a comparatively immature industry;
- 6. Too much focus on mobile data capture;

Data

810780

Network Rail has an abundance of data in structured and unstructured forms.

They key to effective decision making :

- 1. Enough data, not too much or too little;
- 2. Right quality data;
- 3. Only having beneficial data;
- 4. Recognising data is an aid/tool, <u>not the decision maker;</u>
- 5. Qualitative data is as equally powerful as quantitative.

Data migration principles

- Each project should derive 'what' data is required first (establish the 'to-be' position);
- 2. Establish rules / review previous information to migrate data;
- 3. Accept some existing data cannot be migrated automatically and will need manual intervention.

A publication from BI-Survey shows us that 58% of the companies they surveyed said that they base at least half of their regular business decisions on gut feel or experience, instead of being data and information-driven. On average, they realized that the companies would use only 50% of the information available when it came to decision making.

Page 8

Р

67E6

F

Proposed Approach to Data

We can't make a decision based on lots of data, so use a high-level overview approach with capacity to drill down into detail.

9

Bridge polygons

Culvert geospatial location initiative

View from GRV showing output:

The vertices of the polygon will be stored in a data table in the form of latitude and longitude.

Bore diameter will be recorded and coupled with length areas/volumes can be extracted at a national, Region, Route or ELR level.

This data can be exported for use with other datasets.

AIVR – train borne data capture

Overview

Things to discuss / highlight:

- 1. All assets geospatially located using Lat/Long;
- 2. NEST External Provision;
- 3. Enable different ways of working
- 4. How to future proof

Digital examination techniques (scan to BIM, drone and TLS data capture, AI for defect detection)

5. Part of larger system

